The SecY complex forms a channel capable of ionic discrimination.

نویسندگان

  • Kush Dalal
  • Franck Duong
چکیده

Protein translocation across the bacterial membrane occurs at the SecY complex or channel. The resting SecY channel is impermeable to small molecules owing to a plug domain that creates a seal. Here, we report that a channel loosely sealed, or with a plug locked open, does not, however, lead to general membrane permeability. Instead, strong selectivity towards small monovalent anions, especially chloride, is observed. Mutations in the pore ring-structure increase both the translocation activity of the channel and its ionic conductance, however the selectivity is maintained. The same ionic specificity also occurs at the onset of protein translocation and across the archaeal SecY complex. Thus, the ion-conducting characteristic of the channel seems to be conserved as a normal consequence of protein translocation. We propose that the pore ring-structure forms a selectivity filter, allowing cells to tolerate channels with imperfect plugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY

During their biosynthesis, many proteins pass through the membrane via a hydrophilic channel formed by the heterotrimeric Sec61/SecY complex. Whether this channel forms at the interface of multiple copies of Sec61/SecY or is intrinsic to a monomeric complex, as suggested by the recently solved X-ray structure of the Methanococcus jannaschii SecY complex, is a matter of contention. By introducin...

متن کامل

Bacterial protein translocation requires only one copy of the SecY complex in vivo

The transport of proteins across the plasma membrane in bacteria requires a channel formed from the SecY complex, which cooperates with either a translating ribosome in cotranslational translocation or the SecA ATPase in post-translational translocation. Whether translocation requires oligomers of the SecY complex is an important but controversial issue: it determines channel size, how the perm...

متن کامل

Protein Translocation Is Mediated by Oligomers of the SecY Complex with One SecY Copy Forming the Channel

Many proteins are translocated across the bacterial plasma membrane by the interplay of the cytoplasmic ATPase SecA with a protein-conducting channel, formed from the evolutionarily conserved heterotrimeric SecY complex. Here, we have used purified E. coli components to address the mechanism of translocation. Disulfide bridge crosslinking demonstrates that SecA transfers both the signal sequenc...

متن کامل

Investigating the SecY plug movement at the SecYEG translocation channel.

Protein translocation occurs across the energy-conserving bacterial membrane at the SecYEG channel. The crystal structure of the channel has revealed a possible mechanism for gating and opening. This study evaluates the plug hypothesis using cysteine crosslink experiments in combination with various allelic forms of the Sec complex. The results demonstrate that the SecY plug domain moves away f...

متن کامل

Modeling the effects of prl mutations on the Escherichia coli SecY complex.

The apparatus responsible for translocation of proteins across bacterial membranes is the conserved SecY complex, consisting of SecY, SecE, and SecG. Prior genetic analysis provided insight into the mechanisms of protein export, as well as the interactions between the component proteins. In particular, the prl suppressor alleles of secE and secY, which allow export of secretory proteins with de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EMBO reports

دوره 10 7  شماره 

صفحات  -

تاریخ انتشار 2009